Skip to contents

tidy_stats_to_data_frame converts a tidystats list to a data frame, which can then be used to extract specific statistics using standard subsetting functions (e.g., dplyr::filter).

Usage

tidy_stats_to_data_frame(x)

Arguments

x

A tidystats list.

Examples

# Load dplyr for access to the piping operator
library(dplyr)
  
# t-test:
sleep_test <- t.test(extra ~ group, data = sleep, paired = TRUE)

# lm:
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm_D9 <- lm(weight ~ group)

# ANOVA:
npk_aov <- aov(yield ~ block + N*P*K, npk)

#' # Create an empty list
results <- list()

# Add output to the results list
results <- results %>%
  add_stats(sleep_test) %>%
  add_stats(lm_D9, type = "primary", preregistered = TRUE) %>%
  add_stats(npk_aov, notes = "An ANOVA example")
  
# Convert the list to a data frame
results_df <- tidy_stats_to_data_frame(results)

# Select all the p-values
filter(results_df, statistic == "p")
#> # A tibble: 11 × 8
#>    identifier term        statistic    value extra method    type  preregistered
#>    <chr>      <chr>       <chr>        <dbl> <chr> <chr>     <chr> <chr>        
#>  1 sleep_test NA          p         2.83e- 3 NA    Paired t… NA    NA           
#>  2 lm_D9      NA          p         2.49e- 1 NA    Linear r… prim… yes          
#>  3 lm_D9      (Intercept) p         9.55e-15 NA    Linear r… prim… yes          
#>  4 lm_D9      groupTrt    p         2.49e- 1 NA    Linear r… prim… yes          
#>  5 npk_aov    block       p         1.59e- 2 NA    ANOVA     NA    NA           
#>  6 npk_aov    N           p         4.37e- 3 NA    ANOVA     NA    NA           
#>  7 npk_aov    P           p         4.75e- 1 NA    ANOVA     NA    NA           
#>  8 npk_aov    K           p         2.88e- 2 NA    ANOVA     NA    NA           
#>  9 npk_aov    N:P         p         2.63e- 1 NA    ANOVA     NA    NA           
#> 10 npk_aov    N:K         p         1.69e- 1 NA    ANOVA     NA    NA           
#> 11 npk_aov    P:K         p         8.63e- 1 NA    ANOVA     NA    NA