Auerswald, M., & Moshagen, M. (2019). How to determine the number of factors to retain in exploratory factor analysis: A comparison of extraction methods under realistic conditions.

*Psychological Methods*,

*24*(4), 468–491.

https://doi.org/10.1037/met0000200
Borsboom, D. (2006). The attack of the psychometricians.

*Psychometrika*,

*71*(3), 425.

https://doi.org/10.1007/s11336-006-1447-6
Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development.

*Psychological Assessment*,

*7*(3), 309–319.

https://doi.org/10.1037/1040-3590.7.3.309
Comrey, A. L., & Lee, H. B. (1992). *A first course in factor analysis* (2nd ed.). Lawrence Erlbaum Associates.

Costello, A., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis.

*Practical Assessment, Research, and Evaluation*,

*10*(1).

https://doi.org/10.7275/jyj1-4868
Cudeck, R., & O’Dell, L. L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations.

*Psychological Bulletin*,

*115*(3), 475–487.

https://doi.org/10.1037/0033-2909.115.3.475
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures.

*Psychological Methods*,

*5*(2), 155–174.

https://doi.org/10.1037/1082-989X.5.2.155
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research.

*Psychological Methods*,

*4*(3), 272–299.

https://doi.org/10.1037/1082-989X.4.3.272
Fava, J. L., & Velicer, W. F. (1996). The effects of underextraction in factor and component analyses.

*Educational and Psychological Measurement*,

*56*(6), 907–929.

https://doi.org/10.1177/0013164496056006001
Gagne, P., & Hancock, G. R. (2006). Measurement model quality, sample size, and solution propriety in confirmatory factor models.

*Multivariate Behavioral Research*,

*41*(1), 65–83.

https://doi.org/10.1207/s15327906mbr4101_5
Gana, K., & Broc, G. (2019). *Structural equation modeling with lavaan* (Vol. 1). Wiley & Sons.

Hayduk, L. A., & Littvay, L. (2012). Should researchers use single indicators, best indicators, or multiple indicators in structural equation models?

*BMC Medical Research Methodology*,

*12*(1), 159.

https://doi.org/10.1186/1471-2288-12-159
Hayes, A. F., & Coutts, J. J. (2020). Use omega rather than Cronbach

’s alpha for estimating reliability. But

….

*Communication Methods and Measures*,

*14*(1), 1–24.

https://doi.org/10.1080/19312458.2020.1718629
Kaiser, H. F. (1974). An index of factorial simplicity.

*Psychometrika*,

*39*(1), 31–36.

https://doi.org/10.1007/BF02291575
Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis.

*Practical Assessment, Research, and Evaluation*,

*12*(12), 1–11.

https://doi.org/10.7275/WJNC-NM63
MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error.

*Multivariate Behavioral Research*,

*36*(4), 611–637.

https://doi.org/10.1207/S15327906MBR3604_06
MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis.

*Psychological Methods*,

*4*(1), 84–99.

https://doi.org/10.1037/1082-989X.4.1.84
Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis.

*Multivariate Behavioral Research*,

*33*(2), 181–220.

https://doi.org/10.1207/s15327906mbr3302_1
Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses.

*International Journal of Testing*,

*5*(2), 159–168.

https://doi.org/10.1207/s15327574ijt0502_4
Osborne, J. W. (2014). *Best practices in exploratory factor analysis*. Createspace publishing.

Peters, G.-. J. Y. (2014). The alpha and the omega of scale reliability and validity: why and how to abandon Cronbach

’s alpha and the route towards more comprehensive assessment of scale quality.

*European Health Psychologist*,

*16*(2), 56–69.

https://doi.org/10.31234/osf.io/h47fv
Peterson, R. A. (2000). A meta-analysis of variance accounted for and factor loadings in exploratory factor analysis.

*Marketing Letters*,

*11*(3), 261–275.

https://doi.org/10.1023/A:1008191211004
Ruscio, J., & Brendan Roche. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure.

*Psychological Assessment*,

*24*(2), 282–292.

https://doi.org/10.1037/a0025697
Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin.

*Personality and Social Psychology Bulletin*,

*28*(12), 1629–1646.

https://doi.org/10.1177/014616702237645
Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). Pearson.

Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000).

*Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factors or components* (R. D. Goffin & E. Helmes, Eds.; p. 4171). Springer US.

https://doi.org/10.1007/978-1-4615-4397-8_3
Velicer, W. F., & Fava, J. L. (1998). Effects of variable and subject sampling on factor pattern recovery.

*Psychological Methods*,

*3*(2), 231–251.

https://doi.org/10.1037/1082-989X.3.2.231
Velicer, W. F., & Jackson, D. N. (1990). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure.

*Multivariate Behavioral Research*,

*25*(1), 1–28.

https://doi.org/10.1207/s15327906mbr2501_1
Widaman, K. F. (1993). Common factor analysis versus principal component analysis: Differential bias in representing model parameters?

*Multivariate Behavioral Research*,

*28*(3), 263–311.

https://doi.org/10.1207/s15327906mbr2803_1
Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation.

*Psychological Methods*,

*1*(4), 354–365.

https://doi.org/10.1037/1082-989X.1.4.354
Zhang, G. (2014). Estimating standard errors in exploratory factor analysis.

*Multivariate Behavioral Research*,

*49*(4), 339–353.

https://doi.org/10.1080/00273171.2014.908271
Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain.

*Psychological Bulletin*,

*99*(3), 432–442.

https://doi.org/10.1037/0033-2909.99.3.432